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Fe shall investigate the behavior of a navigational gyroscopic instrument 

(gyrocompass, gyrovertical) which moves arbitrarily on the earth’s sur- 
face. If the instrument is autonomous, that is if it does not receive 
data from the motion of other instruments, then it can be made imperturb- 
able (invariant with respect to the motion of the instrument’s base) bY 
a suitable design and a suitable selection of the values of its para- 
meters. 

It is known, however, that the error of an autonomous imperturbable 
navigational instrument caused by non-zero initial conditions does not 
die out. On the other band, if the autonomy is not required, that is if 
we assume that the velocity of the base can be determined at any instant 
of time from the readings of other navigational instruments (more cor- 
rectly, if we know the exact values of the velocity components along the 
geographic axes), then the condition of imperturbability does not deter- 
mine uniquely the dynamic characteristics of a navigational instrument, 
which may then remain invariant with respect to the motion of its base 
even when free vibrations of arbitrary period are present and when the 
damping regime is also arbitrary, Glitscher LX], Ishlinskii, Roitenberg 
and his students, Bonder and Gelezaev [Z] and others investigated designs 
of imperturbable gyroscopic instruments in which the conditions of auto- 
nomous imperturbability were not satisfied. 

That in principle it is possible to construct such an instrument Can 
be argued as follows: Let the instrument have an arbitrary period and an 
arbitrary damping coefficient, and let us assume that both parameters 
are known. Then, knowing the velocity components of the base at any in- 
stant of time we can exactly calculate the ballistic error of the instru- 
ment, This calculation can be carried out by an independent Computer. 
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Ideally exact operations performed by the computer would give corrections 

of the instrument’s reading which in turn would yield the exact value of 

a navigational parameter independent both of the period and of the damp- 

ing coefficient. 

It is practically impossible to make a perfectly imperturbable instru- 

ment with arbitrary coefficients, for the following reasons: 

1. The parameters of the instrument are known only approXimatelY. 

2. Velocity measurements involve errors. 

3. The reduction of velocities in the computer also involves errors. 

Consequently, the forced error component depending on parameters is 

unavoidable, and the selection of the parameters requires compromises. 

On one hand it is desirable that the period be as small as possible and 

damping be as large as possible in order to insure sufficiently fast 

damping of an error arising from non-zero initial conditions. On the 

other hand the period should not differ greatly from the period of 

Schuler, and the damping should be as small as possible in order to mini- 

mize the error arising from the violation of the conditions of imperturb- 

ability. The most convenient values of the parameters depend on the re- 

lationship between the different values of initial conditions and the 

errors in measuring and reducing velocities. In this work we present an 

analysis of the errors of the instrument and determination of the optimal 

values of the parameters. 

We consider here the differential equation of motion of a single 

rotor gyrocompass with an arbitrary period and arbitrary damping. 

It is known that the form of the system of differential equations con- 

trolling the behavior of a gyrocompass depends essentially on its rota- 

tion about the “North-South” axis. For a two-rotor damped gyrocompass 

stabilized about the “North-South” axis the equations of motion are of 

the sixth order. For a one rotor gyrocompass not stabilized about the 

“North-South” axis it is necessary, in general, to take into account the 

inertia of the suspension rings. This would raise the order of the system 

to six, like in the previous case. Satisfying the well known conditions 

of Schuler does not assure the imperturbability of a gyrocompass. 

If we consider, however, the problem in which only the velocity read- 

ing error is taken into account then we can describe the properties of a 

gyrocompass through a simple system of linear differential equations of 

the second order with constant coefficients. Such a description is only 
a rough approximation and is causing loss of certain dynamic properties. 
Nevertheless this simplification (widely used in the past by Bulgakov 

and Nikolai, for example) is permissible and useful for the following 
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reasons: In the first place the basic dynamic properties are preserved 

(oscillatory character of errors, possibility in theory of reducing the 
error to zero at zero initial conditions, dependence of errors on the 
variation of parameters, etc. ), in the second place it is possible to 
obtain solutions in closed form. Bulgakov 131 used this simplification 
when he solved a problem on the accumulation of ballistic deviations. 

In the case of a more complicated and more realistic model this ideal- 

ization enables us to investigate separately the influence of only one 

factor, that is of the imperfection of the velocity meter. This means 

that we can estimate the errors in the case when other conditions, be- 

sides the velocity meter, are ideal, (the absence of rocking is equivalent 

to a perfect stabilization about the “North-South” axis with respect to 

other instruments, the inertia of gimbal rings can be neglected). 

1. The expressions for errors of a gyroscopic instrument with an 

arbitrary period, arbitrary damping and with random variation of the 

velocity error. Ke shall assume that ballistic errors are corrected from 

the readings of an outside imperfect velocity meter. In this case the 

equation of motion is linear and on the right-hand side we shall have in 

the role of perturbation the error of the velocity meter. The equation 

of motion of the gyroscope has the form 

- - + ‘+ (+ - i-2 cos q~ $) Al’, (1.1) 

o* = Q’.v 
gli N 

(I.21 

Here a is the angle between the rotor axis and the plane of the 

meridian, a* is the velocity deviation, VN is the northern velocity com- 

ponent of the base, AVN is the error arising in the reading of VN and in 

the reduction of V,,,. Q I is the static moment of the inner frame, H is 

the angular momentum of the rotor, R is the earth’s radius, E is the 

parameter of damping. In deriving the equation it has been assumed that 

V << RRcos p which indicates that the western velocity component can be 

neglected. When the conditions of Schuler are satisfied (E = 0, R QQl 

cos 0 = gH) the instrument becomes imperturbable. The error AVN will be 

treated as a random function of time with known statistical properties, 

namely we shall assume that the error AVN is stationary, its mathematical 

expectation equals zero and the correlation function is 

T 

AV,Y (t + At) AV, (t) dt = 6~‘~ (Al) (PL- (0) = 1) (1.3) 

It is implied here that AVN is independent of a, which is a good first 
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approximation when the velocity VN is sufficiently small. The initial 
conditions are random quantities with zero mathematical expectation and 
with correlation moments* 

<[A;r(W> =W, <[A&W> = W, 

<[A&(O) Ah(O)]> = Bd (Aa=a-a*) (1.4) 

We shall introduce new variables 

Then Equation ( 1.1) becomes 

@$+2E 2 + ek?z = c$ 
C 
26 g + (i - 0’0) v 

(24.&f~. a&+Qlyy~ 

For the initial conditions we have 

1 
(1.6) 

<Ix (o)l*> = cl*, <[(dx I cl?),=,12> ca*, <lx (0) (dz I ~W,~l> = cl”z (1.7) 

where 

The correlation function for v equals 

PI- (v) = P’~ (i/-At) (~3) 

Let us mention that the equation of a gyroscopic pendulum with one 
rotor (gyrovertical) can be reduced to (1.6). The solution of Equation 
(1.6) with the initial conditions 

2 = a& C&f&== a$ for r=O 

with an arbitrary V(T) and at < < os (oscillatory case) has the form 

* Here and from now on the mathematical expectations and moments will 
be within brackets. 
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(1.9) 

+ $Z-$iF \ { 25eaEt - sin Jro$---@ Lv(v---t)+ 

0’ 
dz 

+ (1 - ooP) emE’ sin v/o,? - 2’ tv (t - t)] dt 

After simple transformations we obtain 

x (7) = e+’ 
( 

Jf/oo2- E2r + 
&I + &o + 2Eoo2v (0) - 

xocos 
I/00”-_ sin J~c@ - m) + 

+ 

+oo2 e --Et 
s L 

2E cos 1/ct>o* - E* t + - t) dt (1.10) 

0 

To make it simple we shall regard u(0) = 0. Assuming that the initial 

conditions are statistically independent of V(T) we obtain the value of 

the dispersion of error at any instant of time -r by taking the average 

over the whole spectrum (see, for example [41) 

[r (r)l2 = r1+ 12 (1.11) 

where 

1 --coo’---253 ___ 
2: cos I/of - g,%* - -==7- sin 7/wo2 - [*r2 pv (tl-~2)dz2dzl (1.12) 

0 

If < = o0 (critical damping), then instead of (1.10) we have 

z (z) = xoe-ooT + (50 + ~00) ve+O’ + 

+ oo* s I- 200 - (3wf - 1) t) e-On v (t - t) dt (1.13) 

0 

After similar transformations instead of (1.12) we obtain 

II = e-20nt {Cl* + 2 (Cpz* + 0oC1~) Z + (C$ + 200C1.2~ + OO’CI~) T*) 

5 + 

I* = 004 * 
s 

. 
[ - 2w0+(3o~~ -l)%] e- “‘O=‘dzl 

SC 
-2200+ 

0 0 
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Similarly, we can obtain the expression for the dispersion of error 

when damping is greater than critical, This case, however, is of no 
interest in practice. The obtained formulas permit us to solve the ana- 
lytical part of the problem, which is the calculation of the mean square 
error at any instant of time when the parameters are known. 

2. Finding the optimum values of the parameters of a gyro-instrument. 
After determining the dispersion of errors we can start on the problem of 
selecting parameters o0 and < and of finding the smallest mean square 
error at any given instant of time v = 7’. The conditions for the extremum 

are 

We can in principle, easily obtain from the above equations the 
optimal values of og = oe’ and of c = 5’. In practice, however, the solu- 
tion becomes involved because I, and I2 have different values when t<os, 
when < = we, and when e > oa. The solution has to be searched in the 
following order: 

1. Solve Equations (2.1) where the values of I, and f, are those from 
Expressions (1.12) for the case when c < oe. If this will result in 
0 < 5 < o*‘, then the solution is not contradictory. If not, then the 
assumption that c’ < oe’ is obviously wrong. 

2. Solve Equations (2.1) where the values of I1 and I, are those for 

< > 00. If the assumption that 6 > o. is correct then the result should 
be 0 < oe’ < 5’. lf not, then the third possibility remains. 

3. Solve Equation (2.1) where the values of I, and I, are those from 
(1.14) and determine 5’ = wo’. 

It is reasonable to expect that in each case the solution is unique, 
If, however, instead of one value we obtain more extremal values for the 
error, then they have to be compared with each other and the smallest 
one se1 ected. 

This procedure leads to very long calculations, because the equations 
are quite complicated. In order to obtain closed solutions we shall 
introduce certain additional simplifications whose justification is 
given below. If < * 1, then we can expect oo’ z 1, because the more o. 
differs from unity the greater is the absolute value of the right-hand 
side of (1.6). and, consequently, the greater is the dispersion of the 
forced component of the error. At the same time the velocity of damping 
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of the error arising from the initial conditions. on the average, does 
not depend on 00 when o,, >> c. This means that in this case the value 

00 = 1 should be close to the optimal value. 

Assuming that < < 1 when o. = 1 may lead to a contradiction, meaning 
that the equations would give 4’ > 1, hence oO > 1. Besides, it is seen 
that the critical case o. = < is close to the optimal one because with 
further increase of c (with damping greater than the critical) the inter- 
mediate process also slows down and the dispersion of the forced compo- 
nent increases. Therefore the case < > o. is of no practical interest. 

We shall consider now two cases: the case of small damping oo’ = 1, 
<’ < 1 and the case of the critical damping oo’ = <’ > 1. 

Depending on the values of the two principal parameters, that is of 
the relative magnitude of the initial conditions and of the time 7’ we 
either leave the period equaling the period of Schuler, unchanged, or we 
decrease the period making the damping critical. Both variants are 
analyzed in detail in (3) and (4) of this paper. To be specific, we shall 
assume from now on that the correlation function of the error v is 

pv (Az) = Cb “‘1 (2.2) 

To make it simpler we shall consider b >> l/T. This expresses the 
assumption that the interval of correlation of the error is considerably 
smaller than the considered intervals of time. 

3. The case of small damping. Retaining only first order terms with 

respect to l/b when o. = 1 we obtain 

The first equation in (2.1) determines <. The results can be obtained 
in closed form if we make the following assumptions: 

1. The initial phase is equally probable, that is 

Cl¶ = 0, C1Z=Csa=2Da/b (D = const) 

2. The initial conditions are sufficiently large, that is 

D’Si (3.3) 

Then, approximately 

<[z (T)]s, z 2b-l(E + D%-2Er) (3.4) 
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From the first condition for minimum (2.1) with respect to < we obtain 

E’=(1/ 2T) In 2TD2 (3.5) 

Depending on the values of T and DL we obtain from (3.5) that <’ d 1 

Fig. 2. 
Fig. 1. 

On the T, 0’ plane the regions where the above inequalities are satis- 

fied are separated by the curve 

(1,’ 2T) In 2TP = 1 

For the region to the right of the above 

hypothesis (c’ < 1) is correct; under these 

to keep o,,‘ = 1. On the other hand, for the 
curve, as shown previously, we have to make 

Fig. 3. 

curve (Fig. 1) the initial 

conditions it is convenient 

region to the left of the 
p - C( 

00 -5 > 1. 

Fig. 4. 

Let us consider the case of small damping. At any fixed instant of 
time there is a corresponding value of e. Figure 2 shows the curves 
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tj’ = tj’(‘I, at D* = lo*, lo*, 106. The optimal value of < at a given fixed 
instant of time T is not optimal at another instant of time. In Fig. 3 
are given the curves 

x=f(V X = i <[z (T)IP)) when 02 = 104 (3.6) 

As expected, at large values of c the error decreases faster, until it 
attains a stationary value. The equation of the envelope of the family of 
curves (shown in Fig. 3 by a dotted line), obtained by substituting (3.5) 
in (3.4), is 

+ <[z P)j2)min = & (1 + ln2TD) (3.7) 

This curve determines the limiting possibilities of a system with con- 
stant linear damping. Let us mention that the main qualitative result of 
this article is that the damping should be smaller for larger time inter- 
vals because of the random variation of the velocity error. If we assume 
the most disadvantagous variations as done by Bulgakov [31, then, for all 
practical purposes, the optimal damping would be the critical damping. 

4. The came of critical dmfnc. Assuming (3.2) and (3.3) we obtain 
the following approximate expression for the dispersion of error at the 
instant of time T = T 

005 + D?[(l + ooT)2+2-] e-20J- 1 
The condition for the minimum with respect to CA+, is 

(4.1) 

25w04f?2*oT 

2T”Ds (o&t’ + Wo + T) 
= ’ 

(4.2) 

The results of a numerical solution of the above equation are shown 
in Fig. 4 in the form of the curves o,,’ = o,‘(I) at D* = lo*, lo’, 106. 

Fig. 5. Fig. 6. 

As in the previous case each value turns out to be optimal only at a 
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given T. The curves (3.6) are shown in Fig. 5. The envelope of the family 
of these curves (shown in Fig. 5 by a dotted curve) is obtained by sub- 

stituting (4.2) in (4.1). From the curves in Figs. 3 and 5 we can also 

determine how critical is our system with respect to the variation of the 

parameters c and o,,, that is for which intervals of time the selected 

values of parameters give results sufficiently close to the optimal re- 

sults. Figure 4 shows that even for wide bounds of variations of 0’ and 

T, the frequency o0 should not be too large. An estimate of the upper 

bound for o,, independent of T can be easily obtained directly from the 

Formula (4.1). Practical considerations indicate that the value of o0 

should be selected such that at least 

Otherwise the mean square value of the initial error decreases less 

than twice. Hence we obtain 

Figure 6 shows the curve oq =3(D2/5) which is the upper limit for o,,‘. 

The results of the investigations presented in (3) and (4) are plotted 

in the D2, T plane. Figure 7 shows the 

curves of constant ratio 

IfL? z= (j.r (())I’) / ([“(I)]“) 
K-T-T-n 

that is of the ratio of the dispersion of i0- 1-1 

the initial error to the dispersion of the 

error of the optimal system at the instant 10 

of time T. 

The curves are drawn for m = 10 and for ’ 
tt~ = 100 (decrease of the mean square error 

10 times and 100 times, respectively). This /c’ 
\ 

graph, then, gives the relationship between 

these parameters at which the desired de- /&-- 
crease of the mean square error is obtained. ‘0 10 

” 

Fig. 7. 
The problem of uniformly optimal system 

of damping, which would give the smallest 

mean square error in a large interval of time cannot be solved with 

mathematical tools used in this paper. Such a system would have variable 
parameters. As the first approximation for a program of variation of 

C(T) we can take, for example, the previously obtained relationship 

i(T) = i’(T). It is reasonable to expect that the errors of the system 
at any instant of time will he smaller than the errors resulting, for 

example, from Formula (3.6). A rigorous solution of this problem would 
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be of great interest. 

Let us repeat that our results are obtained from the most simplified 

model of the problem (1.1). Taking into account more complicated factors 
(rotation about the North-South axis. inertia of the gimbal suspension, 
the western velocity component, etc.) can somewhat change quantitatively 
the optimal parameters and increase errors of a gyrocoapass. However, as 
seen from the graphs, the obtained relationships are quite “rough” in 
that they are not very sensitive to the change of parameters. ge can 
expect. therefore, that the calculated errors which arise from the im- 
perfection of the velocity meter add up, for all practical purposes to 
the errors arising from other causes. 
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